Usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e anexar a média móvel àquela matriz estou tentando calcular a média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Eu tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há nenhum valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 1 Resposta Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Em vez disso, você é forçado a usar um par de linhas: Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, FIR, a resposta de freqüência reduz à soma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyThe Scientist e Engineers Guide to Digital Signal Processing Por Steven W. Smith, D. Como o nome indica, o filtro de média móvel opera fazendo a média de um número de pontos a partir do sinal de entrada para produzir cada ponto no sinal de saída. Na forma de equação, isto é escrito: Onde está o sinal de entrada, é o sinal de saída, e M é o número de pontos na média. Por exemplo, num filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isto corresponde à alteração da soma em Eq . 15-1 de: j 0 a M -1, para: j - (M -1) / 2 a (M -1) / 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode variar de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos de apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos tem o kernel do filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Ou seja, o filtro de média móvel é uma convolução Do sinal de entrada com um impulso retangular com uma área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Documentação Este exemplo mostra como usar filtros de média móvel e reamostragem para isolar o efeito de componentes periódicos da hora do dia em leituras de temperatura por hora, bem como remover ruídos de linha indesejados A partir de uma medição de tensão em malha aberta. O exemplo também mostra como suavizar os níveis de um sinal de relógio enquanto preserva as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover outliers grandes. Suavização de Motivação é como descobrimos padrões importantes em nossos dados enquanto deixamos de lado coisas que não são importantes (ou seja, ruído). Utilizamos a filtragem para executar esta suavização. O objetivo do alisamento é produzir mudanças lentas no valor de modo que seu mais fácil ver tendências em nossos dados. Às vezes, quando você examinar os dados de entrada, você pode desejar suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto Logan para todo o mês de janeiro de 2017. Note que podemos ver visualmente o efeito que a hora do dia tem sobre as leituras de temperatura. Se você está interessado somente na variação diária da temperatura durante o mês, as flutuações de hora em hora só contribuem o ruído, que pode fazer as variações diárias difíceis de discernir. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro de média móvel de comprimento N toma a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 1/24 para a média total. Isso nos dá a temperatura média ao longo de cada período de 24 horas. Filter Delay Note que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de que nosso filtro de média móvel tem um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) / 2 amostras. Podemos contabilizar esse atraso manualmente. Extraindo Diferenças Médicas Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura global. Para fazer isso, primeiro, subtraia os dados suavizados das medições de temperatura por hora. Em seguida, segmente os dados diferenciados em dias e tome a média em todos os 31 dias do mês. Extraindo Peak Envelope Às vezes, também gostaríamos de ter uma estimativa suavemente variável de como os altos e baixos de nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função envelope para conectar altos e baixos extremos detectados em um subconjunto do período de 24 horas. Neste exemplo, nós asseguramos que haja pelo menos 16 horas entre cada extrema alta e extrema baixa. Podemos também ter uma idéia de como os altos e baixos tendem tomando a média entre os dois extremos. Filtros de média móvel ponderada Outros tipos de filtros de média móvel não pesam igualmente cada amostra. Outro filtro comum segue a expansão binomial de (1 / 2,1 / 2) n Este tipo de filtro aproxima-se de uma curva normal para grandes valores de n. É útil para a filtragem de ruído de alta freqüência para pequenas n. Para encontrar os coeficientes para o filtro binomial, convolve 1/2 1/2 com si mesmo e, em seguida, convida iterativamente a saída com 1/2 1/2 um número prescrito de vezes. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro de média móvel exponencial. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um tamanho de janela grande. Você ajusta um filtro de média móvel ponderado exponencialmente por um parâmetro alfa entre zero e um. Um valor maior de alfa terá menos suavização. Amplie as leituras durante um dia. Selecione seu paísPrimagem original: Leia aqui Programa MATLAB para filtro de média móvel M-point H i friends, hoje vamos aprender um como escrever um programa MATLAB para m point movendo averagr filter. Etapas para escrever programa de filtro de média móvel M-point em MATLAB: 1) Tome um dado sinal 2n (0.9) n e denote-o por s (n). 2) Em seguida, gere um sinal de ruído aleatório com o mesmo comprimento (50) que o de s (n) e denote-o por d. 3) Em seguida, adicione sd e salvá-lo em p, ou seja, psd. 4) Sabemos que a fórmula para o filtro de média móvel de ponto m é dada por 5) Para determinar a soma use um para loop. 6) Finalmente dividir somação por M, você receberá sinal original. O programa MATLAB:
No comments:
Post a Comment